
UNCLASSIFIED .

SECURITY CLASSIFICATION OF THIS PAGEr

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

3. DiSTRIIUTION/AVAI AILITY OF REPORT

AD-A2 7 115Approved for public release;
A D -A 2 7 115distribution unlimited.

S. MONITORING ORGANIZATION REPORT NUMBER(S)

NMSIJ-ECE -88-003 7i b olS i/ 7 aZ -&I(--
6a. NAME OF PERFORMING ORGANIZATION I6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(if aplcable)
New Mexico State Universit PARL U. S. Army Research Office

6c. AD DR E SS (0iy, Stsato, and ZIP Code) 7b. ADDRESS (City. State, and 2WCode)

Las Cuces NM 8003P. 0. Box 12211
Las Guces NM 8003Research Triangle Park, NC 27709-2211

So. NAME OF FUNDING/ SPONSORING 8b. OFF7CE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION O~f applicable)
U. S. Army Research Office MAo3cy2

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMIERS
P0.Box 12211 PROGRAM PROJECT TASK IWORK UNIT

Research Triangle Park, NC 27709-2211ELMNNO IN.No SINN-

11. TITLE (Include Securot Clausficatfon)

A Prototype Virtual Port Memory Multiprocessor
12. PERSONAL AUTHOR(S)

Eric E. Johnson
13a. TYPE OF REPORT 113b. TIME COVERED 14. DATE OF REPORT (Year, M~onth, Day) IS. PAGE COUNT

I FROM _ __TO 11 r

16. SUPPLEMENTARY NOTATION The view, opinions and/or findings contained in this report are those

of he auth r(*).and shyuld not be const ud as an ffiAl gjDarenofteAm psio,

17. COSATI CODES 18. SUBJECT TERMS (Continue on revemu if necess"i and idtiy by block numibed)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on rev-srse if necessary and identUf' by block number)

A Small Bus-based Prototype Virtual Port Memory Machine is Described.(

DTICSELECTE
JAN 24 19 9 u

20. DISTRIBUTION /AVAiLASIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASIFCATION
OUNCLASSIFIEDIINUMITE 03 SAM" RPT. QTCUESUnclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPH4ONE fInlude Arta Code) I22c. OFFICE SYMBOL

OD FORM 1473, e4 MAR 33 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete. UNCLASSIFIED



A PROTOTYPE VIRTUAL PORT MEMORY
MULTIPROCESSOR

ERIC E. JOHNSON

NMSU-ECE-88-003
May 1988

90 01 2" 0 14



A PROTOTYPE
VIRTUAL PORT MEMORY MULTIPROCESSOR

Eric E. Johnson

I. VIRTUAL PORT MEMORY ARCHITECTURES

The virtual port memory class of multiprocessor architectures was defined in [JOHNS87,
JOHNS881 as follows:

Definition: A virtual port memory multiprocessor architecture provides
each process of a computation or concurrent system with a private virtual address
space and pass by value message passing semantics, based upon an underlying
hardware structure consisting of a global memory. equally accessible to all
processors, and a pass by reference message network.

The techniques employed to implement a virtual port memory architecture may include hardware,
firmware, and software elements, with many architectural variations possible to accommodate a
wide range of applications.

The programmer's model of such a system is shown in Figure 1. The principal features of this
view of the architecture are the multiple processors, each with a private memory, and a
high-bandwidth interprocessor message channel (or network) used to pass objects by value.

One approach to implementing :his architecture is shown in Figure 2. Each processor is
connected to a private port through which to access the shared memory, similar to some shared
memory designs; a significant difference is that addresses presented at the ports are virtual
addresses, and each port constitutes a distinct virtual address space.

The topic of this paper is a system level description of a prototype implementation of this type
of multiprocessor architecture. Work is currently underway at New Mexico State University to
construct a 4 PE prototype and to develop the necessary system software to evaluate the usefulness
of this architecture. This machine will also serve as a test bed for related architecture and parallel
programming research, including investigation of novel processor architectures, development of a
model for program reference behavior, and evaluation of cache prefetching techniques.

Message Channel (High BW)

CPU CPU CPU

For
t

0
1 0

MEMORY MEMORY MEMORY

Figure 1: Virtual Port Memory Programmer's Model anld/or
tat. Specil]

____ ____ ___ vdP



Message Channel (Low BW) 

I I 
CPU CPU CPU 

I I 
1 port 1 1 port 1 1 port J 

ADDRESS TRANSLATOR 

I 

GLOBAL MEMORY 

Figure 2: A Virtual Port Memory Implementation Model 

II. THE PROTOTYPE ARCHITECTURE 

Figure 3 shows a block diagram of a simple bus-based virtual port memory implementation. 

Execution of application and most system processes takes place on the processing elements (PEs). 

User interface processors (UIPs) are connected to user workstations and execute shell processes, 

while input/output controllers (IOCs) manage other 1/0. The three processor types share the global 

memory, and pass interprocess messages among themselves over the interprocessor message bus 

(1MB). Requests for use of the global memory are sent from the processors to the address 

translator (ATran) over a transaction request bus (TRB); translated requests are queued in the 

memory controller for action by the appropriate bank of the interleaved memory, and data transfer 

takes place over the data transfer bus (DTB). Page copy hardware is contained within the memory 

banks for fast and efficient memory-to-memory DMA; this minimizes the performance impact of 

copy-on-write faults, and is also useful for general data movement. 
The following sections discuss details of the prototype machine on a module by module basis. 

Section III describes the interconnection subsystem, including the buses and TRB arbiter. Section 

IV addresses the global memory subsystem, including the bulk DRAM with its cycle and refresh 

controllers, the page copy mechanism, and the address translator. Section V discusses the 1/0 

subsystem implemented in the prototype, while section VI describes the structure of the prototype 

processing element. The paper concludes with a discussion of a prototype operating system in 

section VII. 

2 



IMB

HI

UIP DBPE

IOC PE

IOC PE

Memory

TRB Control
(ATran)

BANKS OF SHARED MEMORY

Figure 3: A Bus-Based Virtual Port Memory Prototype

3



Ill. INTERCONNECTION SUBSYSTEM

The interconnection subsystem for the prototype machine forms the foundation on which the
rest of the machine is built. The design parameters of this prototype interconnection subsystem
were chosen to support a total of 15 processor modules (PEs, IOCs, and UIPs) and one memory
controller.

The electrical and mechanical specifications for the buses and modules are quite similar to those
for the VMEbus [MOT85], except that the buses operate synchronously (16 MHz), and the
TTL-level drivers and receivers specified for the VMEbus may be replaced by higher-performance
trapezoidal waveform drivers and receivers.

The signal and power circuits will enter the processor and memory controller modules through
two 96-pin DIN connectors. (The modules will be standard 6U by 160 mm Eurocards.) These
circuits may be grouped as follows:

BUS CIRCUITS DIRECTION LINES

Transaction Request Bus (TRB) Address P > M 32
Port # P , M 5
Trans. data P > M 32
Control P ,> M 5
Arbitration P <o<> Arb. 2

Data Transfer Bus (DTB) Data Bidirectional 32
Port # M ,> P 5
Control M > P 5

Interprocessor Message Bus (IMB) Msg. data P o P 32
Control P >> P 6
Arbitration P ">> Arb. 2

Utility Bus Slot # >, P 5
Reset ) P 1
SysClock >> P I
SysQClock P 1
+5 v P 12
Return « P 12

These buses operate as follows: when a processor module (e.g., the PE cache controller)
requires a global memory cycle, it must first request and be granted access to the Transaction
Request Bus (TRB). The processor module then places its port # (obtained from the utility bus)
along with the (virtual) address and any data for the transaction on the TRB for one clock cycle:
these signals are received by the memory controller, which immediately begins transaction
processing, usually by translating the virtual address to a physical address (one clock cycle).

In the case of a simple read or write cycle, the translated address, port # and cycle type are
then queued at the appropriate memory bank (see next section); when the memory bank is ready to
perform the cycle, the DTB is connected to the appropriate memory bank, and the data transfer is
initiated by the DTB controller by driving the port # onto the bus and asserting appropriate control
signals. The cycle runs synchronously, because all devices connected to the DTB operate at full
DTB speed.

The IMB is a synchronous processor-processor channel. Control of the IMB is allocated by a
dedicated IMB arbiter on a message-by-message basis (messages may take more than one cycle).
Processors (and the memory controller) monitor the process IDs of messages on the bus, and queue
messages addressed to resident processes in a receive FIFO.

4



IV. MEMORY SUBSYSTEM

The prototype memory subsystem consists of several cooperating entities: the address translator
(ATran), several interleaved banks of dynamic RAM with associated cycle controllers, a refresh
timing unit, a page copy unit, a data network, and the DTB controller (see below).

Refresh
Unit

DRAM DRAM DRAM DRAM

Page

Unit

DTB
Controller

Figure 4: Prototype Global Memory Subsystem

The central components are, of course, the memory modules themselves. In order to match the
performance of the DTB, multiple interleaved banks of DRAM are employed. Each is controlled by
a dedicated cycle controller (CC in Figure 4), which sequences the control, data, and address
signals to the DRAMs.

Also associated with each bank of DRAM is a request queue, implemented as FIFO buffers.
These queues contain requests for transactions or page copy cycles. Each entry contains a code for
the requested cycle type (including direction of data movement), the physical address of the affected
memory operand(s), and may also contain transaction data.

The refresh unit is simply a timer which signals the need for a refresh cycle to the DRAM cycle
controllers at appropriate intervals. Refresh requests are accommodated through use of "hidden
refresh," which adds a CAS-before-RAS refrech cycle to the end of a normal read or write cycle; if

5



no cycle is in progress when the refresh request arrives, the cycle controller launches a
CAS-before-RAS refresh cycle. Both refresh methods employ refresh row address counters
internal to the DRAMs.

The address translator (ATran) is the "front end" of the memory subsystem, as seen by the
processors. It translates the system virtual addresses arriving in transaction requests to the physical
addresses used within the memory subsystem. A full-scale virtual port memory multiprocessor
would employ an address translation cache to store the most recently used virtual-to-physical
address mappings; this reduced-size prototype will support a smaller system virtual address space,
and can therefore store all virtual-physical pairs in a simple RAM within the ATran. Translated
requests are passed from the ATran to the request queue of the DRAM bank selected by low-order
bits of the page frame number in the physical address:

Page Frame Number

PHYSICAL
ADDRESS bank # page offset

The page copy unit receives requests to perform memory-to-memory copy operations from
other processors via the IMB. The data movement involved in these page copy operations takes
place entirely within the memory subsystem. The page copy unit places requests for corresponding
read and write memory cycles at the head of the request queues of the affected memory banks; data
is then transferred between banks (or from one bank back to the same bank) through the memory
data network. Page copy requests could severely reduce the throughput rate of external (TRB)
requests if no flow control were imposed; the page copy unit therefore generates its pre-emptive
requests only after affected memory banks have had the opportunity to perform an intervening
externally requested cycle.

The data network mentioned above contains more than simple data buses to connect the DRAM
data inputs and outputs to the DTB. This network has the ability to route internal page copy traffic
between banks, to latch data read from a bank so that it may be copied back to that bank, and to
perform arithmetic and logical operations on operands from transaction requests and the memory
banks.

Finally, the DTB controller works with the cycle controllers of the DRAM banks to manage the
flow of data from the memory banks to the processors over the DTB.

6



*

V. I/0 SUBSYSTEM

The function of the 1/0 subsystem in the prototype virtual port memory machine is to perform
automatic transfer of data between the global memory and external 1/0 devices. The initial IOC for
the prototype machine (Figure 5) will interface the system to an external VMEbus, and will operate
as an intelligent I/O processor, executing programs from on-board ROM in response to messages
received over the 1MB.

VMEbus

~VME IOC

VMEbus5e
Interface

Message ,,
Local Buis

Memory Interface '

-------- IMB

Controller

Transceivers

DTB TRB

Figure 5: Prototype VMEbus IOC

7



q

VI. PROTOYPE PROCESSING ELEMENT

Figure 6 shows a block diagram of the prototype PE. Due to the freedom from cache coherence
concerns in a virtual port memory architecture, each PE may make full use of a private cache
memory; indeed, caches may be made quite large to minimize traffic on the system bus. The cache
controller on the PE generates TRB requests upon cache misses and write-backs, and may also
initiate prefetch requests to minimize cache misses seen by the execution unit (EU).

The message unit queues messages to be sent over the IMB, as well as messages so received,
and may be enabled to interrupt the EU upon receipt of a message.

IMB

MSG UNIT

EU

CACHE
CACHE

CONTROLLER

TRB

DTB

Figure 6: Prototype Processing Element

8



The prototype EU consists of a 68020 32-bit microprocessor with a 68882 floating point
coprocessor, along with an EPROM which contains startup vectors and code, and some operating
system kernel routines. The cache in the prototype PE will be 64 Kbytes in size, 2-way set
associative. The cache controller will initially perform cache fetches only on misses, and will
employ a write-back policy for cache writes. A more advanced cache controller which executes a
variety of prefetching algorithms will be implemented in the future.

Not shown in the figure are a small amount of local RAM used by resident system software,
and a simple access control circuit which ensures the isolation of process address spaces by
trapping illegal access attempts.

VII. PROTOTYPE OPERATING SYSTEM

The operating system implemented on the prototype virtual port memory machine will be based
on the system described in [JOHNS87], and will probably use portions of a multitasking kernel
already implemented for 68000-family processors.

The major functions of this operating system will, of course, be similar to those of other
multiprocessor operating systems; virtual memory management will reflect the virtual port memory
environment, and will employ the page copy hardware for high-performance copy-on-write fault
handling. Run-time linking may be accomplished as described in [JOHNS87].

This prototype will provide a test bed for evaluation of various processor allocation, memory
management, and cache control strategies.

REFERENCES

JOHNS87 E.E. Johnson, The Virtual Port Memory Multiprocessor Architecture, PhD
dissertation, New Mexico State University, 1987.

JOHNS88 E.E. Johnson, "The Virtual Port Memory Multiprocessor Architecture," Technical
Report NMSU-ECE-88-O01, 1988.

MOT85 Motorola, VMEbus Specification Manual, Revision C. 1, October 1985.

9


